Human fetal liver cells for regulated ex vivo erythropoietin gene therapy
نویسندگان
چکیده
Possible risks and lack of donor livers limit application of liver transplantation. Liver cell transplantation is, at this moment, not a feasible alternative because engraftment in the liver is poor. Furthermore, there is also shortage of cells suitable for transplantation. Fetal liver cells are able to proliferate in cell culture and could therefore present an alternative source of cells for transplantation. In this study, we investigated the utility of human fetal liver cells for therapeutic protein delivery. We transplanted human fetal liver cells in immunodeficient mice but were not able to detect engraftment of human hepatocytes. In contrast, transplantation of human adult hepatocytes led to detectable engraftment of hepatocytes in murine liver. Transplantation of fetal liver cells did lead to abundant reconstitution of murine liver with human endothelium, indicating that endothelial cells are the most promising cell type for ex vivo liver cell gene therapy. Human liver endothelial cells were subsequently transduced with a lentiviral autoregulatory erythropoietin expression vector. After transplantation in immunodeficient mice, these cells mediated long-term regulation of murine hematocrits. Our study shows the potential of human liver endothelial cells for long-term regulated gene therapy.
منابع مشابه
Expansion of Non-Enriched Cord Blood Stem/Progenitor Cells CD34+ CD38- Using Liver Cells
Many investigators have used xenogeneic, especially murine stromal cells and fetal calf serum to maintain and expand human stem cells. The proliferation and expansion of human hematopoietic stem cells in ex vivo culture were examined with the goal of generating a suitable protocol for expanding hematopoietic stem cells for patient transplantation. Using primary fetal liver cells, we established...
متن کاملAdipose Stem Cells as a Feeder Layer Reduce Apoptosis and p53 Gene Expression of Human Expanded Hematopoietic Stem Cells Derived from Cord Blood
Introduction: Human hematopoietic stem cells (hHSCs) have been used for transplantation in hematologic failures. Because the number of hHSCs per cord blood unit is limited, the expansion of these cells is important for clinical application. It has been reported that cytokines and feeder layer provide a perspective to in vitro expansion of hHSCs. In this regard, cord blood CD34+ cells ex...
متن کاملImmature erythroblasts with extensive ex vivo self-renewal capacity emerge from the early mammalian fetus.
In the hematopoietic hierarchy, only stem cells are thought to be capable of long-term self-renewal. Erythroid progenitors derived from fetal or adult mammalian hematopoietic tissues are capable of short-term, or restricted (10(2)- to 10(5)-fold), ex vivo expansion in the presence of erythropoietin, stem cell factor, and dexamethasone. Here, we report that primary erythroid precursors derived f...
متن کاملThe Role of Gene Therapy in Cartilage Repair
The key principle of gene delivery to articulations by direct intra-articular injection is to release complementary DNA(cDNA)-encoding medical products that will lead to maintained, endogenous production of the gene products withinthe articulation. In fact, this has been accomplished for both in vivo and ex vivo gene delivery, using several vectors,genes, and cells in some animal models. Some c...
متن کاملEffects of Inflammatory Cytokine Tumor Necrosis Factor-α on Human Mesenchymal Stem Cell Gene Expression: A Mechanism for Liver Regeneration
Introduction Insulin-like growth factor I (IGF-I) which is produced in abundance in the normal adult liver, is deeply involved in hepatocyte survival, growth, and differentiation during liver development. IGF-I plays the roles via the receptor (IGF-IR) signaling pathway. IGF-IR unlike IGF-I is expressed strongly in the developing liver, but much more weakly in adults. Objective: We hypothesi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2014